If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2-48x+12=0
a = 42; b = -48; c = +12;
Δ = b2-4ac
Δ = -482-4·42·12
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-12\sqrt{2}}{2*42}=\frac{48-12\sqrt{2}}{84} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+12\sqrt{2}}{2*42}=\frac{48+12\sqrt{2}}{84} $
| 2.2=7.9+y | | -13/7g=2 | | 7x+6=7(x+2) | | Y=e²* | | 2/9p+7=1/4p | | 2.5^x-5=10.625= | | 〖2.5〗^x-5=10.625= | | 2.5^x-5=10.625= | | 3/5m-1/3=2/7 | | 3(x-4)-(x-5)=7 | | 5/12h+1/7=1/3 | | 6x+6°=54 | | 4+3b=3 | | 3m+6=2m+4 | | 3m+6=2m=12 | | 5y+11=10y-4 | | 15+20f=135 | | Y-(.75y)=587.5 | | x^2+2x+140=25x+50 | | 25x+15(0.28x)=1000000 | | X+7x+4x+21=152 | | 25x+15(.28x)=1000000 | | 25x+15(.28x)=1,000,000 | | X+5(2x+8)=24 | | 5x-2(4-x)=15 | | 52((40x)+(5(1.5x))=40000 | | 700+n+80=780+n | | 52x*(40x+5(1.5x))=40000 | | 40000=52((40x)+(5(1.5x)) | | 40000=52((15(1.5x)+40x) | | 14k-8÷4-4=2k | | -39-7x=-12×+6 |